연립일차방정식 해 집합의 표현 앞에서 살펴본 가우스 소거법과 가우스-조르단 소거법은 연립일차방정식 \(A\mathbf{x} = \mathbf{b}\)의 해를 구할 때, 단순히 해의 유무를 판별하는 것에 그치지 않고, 해가 여러 개 존재할 경우 그 구조까지 명확히 기술할 수 있도록 해 준다. 특히 무수히 많은 해가 존재하는 경우, 자유롭게 변하는 변수를 매개변수(parameter)로 설정하여 전체 해 …
Linear Algebra
-
-
가우스 소거법과 연립일차방정식 해법 연립일차방정식 \(A \mathbf{x} = \mathbf{b}\)의 해를 구하는 전통적이고도 강력한 방법 중 하나가 바로 가우스 소거법(Gaussian Elimination)이다. 가우스 소거법은 계수행렬과 상수항을 함께 다루는 증분행렬(augmented matrix)에 일련의 행 연산(row operation)을 적용하여, 방정식을 단계적으로 단순화한다. 이를 통해 해의 유일성, 무수히 많은 해, 해가 없는 경우 등을 명확히 판별할 수 …
-
계수행렬, 미지수 벡터, 상수항 벡터 연립일차방정식(Linear System)은 여러 개의 일차방정식을 동시에 만족하는 해(미지수)를 구하는 문제이다. 예를 들어 다음과 같은 형태의 연립방정식을 생각해 보자. \[ \begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1,\\[6pt] a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2,\\[6pt] \quad\vdots\\[6pt] a_{m1}x_1 + a_{m2}x_2 + \cdots + …
-
역행렬의 정의 역행렬(inverse matrix)은 행렬 연산에서 매우 중요한 역할을 하며, 주어진 행렬이 가역적(invertible)인지 판별하는 핵심 도구이다. 특히, \(n \times n\) 정사각행렬 \(A\)에 대해, 만약 \(A\)와 같은 크기의 행렬 \(A^{-1}\)가 존재하여 \[ AA^{-1} = A^{-1}A = I \] 를 만족시킨다면, \(A\)는 가역행렬(역행렬이 존재하는 행렬)이라 하며, \(A^{-1}\)를 \(A\)의 역행렬이라고 한다. 역행렬은 유일하게 …
-
교대성, 선형성 등 행렬식은 행렬의 각 행(또는 열)에 대해 선형성을 가지며, 동시에 교대성을 띠는 다중 선형 함수(multilinear function)이다. 이 성질들은 행렬식의 계산과 해석에 있어 매우 중요한 역할을 하며, 행렬식이 선형변환에 의한 체적 변화나, 선형연립방정식의 해의 존재 여부를 결정하는 데 기초적인 도구로 작용한다. 구체적으로, 행렬식의 주요 성질은 다음과 같다. 정리 1. …
-
순열을 사용한 행렬식의 정의 \(n \times n\) 정사각행렬 \(A = (a_{ij})\)의 행렬식은, 모든 순열을 고려하여 각 순열에 부여된 부호와 해당 순열에 따라 선택된 행렬 원소들의 곱을 더하는 방식으로 정의된다. 이 정의는 행렬의 각 행에서 서로 다른 열의 원소를 하나씩 선택하는 모든 경우를 반영하며, 행렬의 기하학적 의미(선형변환에 의한 체적의 변화 등)와 …
-
다양한 특수 행렬의 소개 특수 행렬은 일반 행렬과 달리, 그 구조가 단순하거나 특정 성질을 만족하기 때문에 행렬 연산을 단순화하고, 선형변환의 성질을 명확히 분석하는 데 큰 도움을 준다. 이 절에서는 대표적으로 자주 사용되는 몇 가지 특수 행렬, 즉 영행렬, 단위행렬, 대각행렬 등을 소개하고, 그 정의와 기본 성질을 간략히 설명한다. 정의 1. …
-
행렬의 덧셈과 스칼라배 행렬의 덧셈과 스칼라배는 선형대수학의 기초 연산으로, 행렬을 구성하는 각 성분에 대해 수행되는 연산이다. 이 연산들은 행렬의 구조를 그대로 유지하면서, 여러 행렬을 결합하는 역할을 한다. 특히, 이러한 연산들이 만족하는 성질들은 벡터공간의 공리와 유사하며, 이후 선형변환, 행렬 곱셈 등의 복잡한 연산을 이해하는 데 필수적이다. 두 행렬 \(A = (a_{ij})\)와 …
-
행렬의 구성요소와 표기법 연립일차방정식을 다룰 때 핵심적으로 등장하는 것이 바로 행렬(matrix)이다. 행렬은 숫자(또는 다른 대상)들을 직사각형 형태로 배열한 것으로, 선형대수학 전반에 걸쳐 널리 활용된다. 예를 들어, 연립일차방정식의 계수행렬이나, 변환을 표현하는 행렬 등을 떠올릴 수 있다. 이 절에서는 행렬의 기본 정의와 표기법을 간단히 정리한다. 정의 1. (행렬) 행렬이란, 체(field) \(\mathbb{F}\)의 원소인 …
-
선형대수학 발전 배경 선형대수학은 연립일차방정식을 풀고, 방정식의 해를 체계적으로 연구하는 과정에서 태동하였다. 고대 바빌로니아와 그리스 시대에도 기본적인 연립일차방정식을 다루는 사례가 있었으나, 이를 일반화하거나 체계적으로 연구하지는 못하였다. 이후 18세기에서 19세기에 걸쳐 수학자들이 행렬과 행렬식을 도입하면서, 연립일차방정식을 구조적으로 이해하려는 시도가 본격화되었다. 특히 가우스(C. F. Gauss)는 대규모 천문·측지 관측 데이터를 분석하기 위해 오늘날 …